
temperature distribution along the system when the Thomson heat is either released or ab- 
sorbed, K; U (I), U (II), voltage drops for two current directions, V; o, Stefan-Boltzmann 
constant, W/(m2"K4); Oef f, effective Thomson coefficient for the "tube-metal" system, V/K; 
st, emissivity of the tube. Superscripts: t, tube; subscripts: eff, effective; ~, ~i, 
current magnitudes; c, cross-sectional area; s, side surface. 
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FORMATION OF A LAYER OF A LIQUID AS IT IMPINGES 

ON A HORIZONTAL PLANE 

G. R. Shrager and I. V. Shcherbakova UDC 532.62 

We have conducted a numerical study of the spreading out of a liquid over a 
horizontal plane, with the liquid, in this case, running off over the surface 
of a semiinfinite vertical cylinder. 

When a liquid impinges on a horizontal surface it spreads out and as a result a Liquid 
layer of a specific thickness is formed on the surface. A characteristic unique feat lre 
of the flow achieved in this case is the presence of a free surface. The flow of a viscous 
liquid over a horizontal surface with a relatively small layer thickness has been studied 
in a number of papers [1-6]. Attempts have been made numerically to solve the proble1~ of 
the spreading out of a column of liquid under the force of gravity [7-9]. In this pa:=ticu- 
far study we examine the axisy~mnetric motion of a viscous liquid over a horizontal plane, 
with the liquid, in this case, running off over the surface of a semiinfinite verticai~ cylin- 
drical rod, impinging on a horizontal plane. The motion is assumed to be creeping, so that 
the inertial forces may be regarded as negligibly small in comparison to the viscosity forces. 
The capillary forces are assumed to be small in comparison to the viscosity and gravitational 
forces, and thus are also not taken into consideration. 

i. Formulation of the Problem. In a cylindrical coordinate system the system of equa- 
tions describing the flow, in conjunction with the above assumptions, has the form 

FAu-- ozOP - - p g = 0 ,  ~(Av r zv ) orOP = 0 ,  A p = 0 .  (1)  

The t h i r d  of  the  e q u a t i o n s  in  (1)  i s  a consequence  o f  t he  f i r s t  two and o f  t h e  c o n d i t i o n  
o f  i n c o m p r e s s i b i l i t y .  

The c o n d i t i o n s  s p e c i f y i n g  an absence  o f  t a n g e n t i a l  s t r e s s ,  e q u a l i t y  of  the  norma] s t r e s s  
to  the  e x t e r n a l  p r e s s u r e ,  and the  k i n e m a t i c  c o n d i t i o n ,  a r e  a l l  s a t i s f i e d  a t  t he  f r e e  s u r f a c e :  

sity. 
1989. 
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Fig. I. Structure of the flow and the evolution of the free 
surface in the liquid spreading process. 

Fig. 2. Change in the thickness of the layer over time. 

dz dr 
sl'ln = O, n l l n  = - - P o ,  - -  u, = v. 

dt dt 

The condition of adhesion is utilized at the surface of the cylindrical rod and on 
the horizontal plane: 

u=v=O,  z=O, R,~r<~R( t ) ;  O~<z<oo, r=Rx .  

(2) 

(3) 

At some distance from the horizontal plane, the liquid impinges at a constant rate 
of flow Q, with the velocity profile in this case coincident with the solution of the problem 
dealing with the steady-state flow in a liquid layer of constant thickness, running off 
along the vertical cylindrical surface [10]. Thus, the boundary conditions at infinity 
have the form 

= , v = O ( a > O ) ,  Q = c o n s t ,  

z---~- oo, R l  <~ r <~ Ro. 

(4) 

At the initial instant of time, the liquid layer is situated on the surface of the 
vertical cylindrical rod, and the free surface is formed by a cylindrical surface of radius 
R0. In selecting R0 it is essential that we bear in mind that the thickness of the liquid 
layer in the case of a stabilized flow is determined by the relationship between the visco- 
sity and gravitational forces in conjunction with the rod radius. 

In order to achieve equivalence in the solution of the problems involving the utilization 
of Eqs. (i) relative to the solution of the problem involving the continuity equation, in 
the place of Ap = 0 the following condition of incompressibility at the boundaries must 
be satisfied [ii]: 

vV = 0. (5) 

2. Calculation Method. The solution of the stated problem is found by a difference 
method in the end region; in this case, the boundary for which conditions (4) have been 
satisfied must be sufficiently removed from the horizontal plane. The difference analogs 
of Eqs. (i) are written in a grid which contains irregular nodes in the vicinity of the 
free surface. For the solution we resort to the Gauss-Seidel iteration method. The first 
of the conditions in (2), in combination with the incompressibility condition (5) at the 
free surface, is written in a local orthogonal coordinate system in the form proposed in 
[12], which makes it possible to use a moving calculation scheme to calculate the velocity- 
vector components. For more precise satisfaction of the difference analog of the incompres- 
sibility condition within the calculation region, a correcting procedure is employed in 
each iteration [13, 14], which involves the introduction of a correction velocity potential. 
Use of this procedure to recalculate the velocities derived from the difference analogs 
of the first two equations in (i) ensures the solenoidality of the velocity vector field 
over the entire duration of the flow without accumulation of error. 
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Fig. 3. Functions characterizing the change in the radius of 
the layer over time. 

Fig. 4. The radius of the layer as a function of W. 

The general sequence of calculation involves the following. 

The solution of the difference analogs of Eqs. (i) with satisfaction of conditions 
(2)-(5) at the boundaries is found by means of the iteration schemes. The pressure v~lues 
at the surface of the cylindrical rod are found from the difference analog of the second 
of the equations in (i), while those values at the horizontal plane are found from the dif- 
ference analog of the first of the equations from (i). The pressure at the free surface 
is found from the second condition in (2). In calculating the velocity-vector components 
in each iteration the velocities are recalculated by means of a correcting procedure [14]. 
After obtaining the steady-state velocity and pressure fields from the difference analogs 
of the last two conditions in (2) we determined a new position and shape for the free sur- 
face. In this derived region the solution for system of equations (i) is obtained on~=e 
again. Thus, we achieve a sequence of quasisteady solutions and the change in the free 
surface with the passage of time. 

3. Study Results. In discussing the results, let us use the dimensionless comp!ex 
W = pgR02/pu0, characterizing the ratio of the gravitational and viscosity forces Here 
u 0 = Q/z(R02 - R12) is the average translational velocity of the liquid as z + ~. 

With the exception of W, this flow is determined by the dimensionless radius RI := RI/R0 
of the cylindrical rod, with the bar in the notation of the dimensionless quantities dropped 
in the following. Figure 1 shows the evolution of the free surface in the runoff pro(:ess 
for various values of W when R I = 0.25, with the solid curves representing W = 24 7 (I: = 
7, 13, 21) and the dashed curves W = 2.5 (t = ii, 24, 40). The structure of the flow at 
the instant of time at which the horizontal plane gives rise to the formation of the Liquid 
layer is shown in the upper portion of Fig. i. We can divide the entire flow region into 
three zones. The first zone covers the flow in the layer of the liquid on a vertical wall 
with the characteristic velocity profile (4), while the second zone covers the transition 
of vertical flow to horizontal; finally, the third zone represents the flow within the li- 
quid layer on the horizontal plane. 

Figure 2 shows the change in the liquid layer thickness h on the horizontal plane over 
time t, referred to the quantity R0/u0, in various sections r = const, R I = 0.25: curves 
i) r = 2; 2) 3.5; 3) 4.5. The solid curves are a result of calculations conducted at W = 
24 7; the dashed curves represent calculations conducted for W = 2.5, R I = 0.25. The layer 
formed on the horizontal surface exhibits a wedge-shaped form and the thickness of th~ layer, 
all other conditions being equal, increases as W is reduced 

An approximate nonlinear equation is presented in [5] for the thickness of the layer 
formed in the spreading out of a viscous liquid over a horizontal plane under the force 
of gravity: 

h, = v (h h) (6) 

The self-similar solution of Eq. (6) for the case of the spreading out of an axisymme- 
tric spot in whose center a constant liquid flow of intensity Q is maintained yields an 
expression for the spot radius in the form [5, 15]: 
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= t ' i ~ ,  (7) 

where A is a dimensionless universal constant equal to 0.65 according to the experimental 
data of [4]. 

In the flow-spreading stage, when the diameter of the liquid layer exceeds its thickness, 
the influence of the flow in the transition zone and the presence of a solid side wall on 
the motion of the leading front of the layer ceases tO be significant, and the problem of 
describing the spreading process can be formulated with utilization of Eq. (6) in analogy 
with [15]. Thus, assuming satisfaction of relationship (7), in the case under considera- 
tion, given a relatively small layer thickness, we can write the dimensionless analog of 
(7) in the form 

R ~ BWIISt 112, B = A(1 --R~)3/S ~ 3Is. 
(8) 

The relationships which characterize the change in the radius of the layer over time 
for various W are shown in Fig. 3: I) W = 2.5; 2) 12.3; 3) 24.7 (R l = 0.25). The points 
represent the results of the calculations, while the solid lines are straight, with a slope 
of 0.5. The calculation results confirm the law R ~ t I/2 and make it possible to determine 
the time from which this law may take effect. Deviation of the points at the initial in- 
stant of time is a consequence of the significant non-one-dimensionality of the flow in 
the zone of transition from vertical to horizontal flow, the influence of the side wall, 
and the failure to satisfy the condition of smallness for the relative thickness of the 
layer, i.e., failure to fulfill the basic assumptions under which the solution for (7) was 
obtained. In order to confirm the validity of the solution of (8) over rather long periods 
of time, we have to examine the relationship between R and W. The points in Fig. 4 show 
the calculation results which characterize the radius of the layer as a function of W, and 
with R l = 0.25 the solid lines are straight, with a slope of 0.125: i) t = 13.4; 2) 8.1; 
3) 5.7. The results of the calculation satisfactorily confirm the law R ~ W I/s. 

The results of the calculations carried out for R I ffi 0.625 and 2.5 ~ W ~ 25 also con- 
firm the validity of the solution for (8) for prolonged periods of time. The difference 
between the values of B obtained by calculation and from expression (8) does not exceed 10%. 

NOTATION 

z, r, coordinates in the cylindrical coordinate system; u, v, velocity components in 
the z and r directions, respectively; ~, dynamic viscosity; p, pressure; s, n, unit vectors, 
tangential and normal to the free surface; H, stress tensor; P0, external pressure; t, time; 
RI, radius of cylindrical rod; R0, radius of liquid layer on cylindrical rod at initial 
instant of time; V, velocity vector; R(t), radius of liquid layer on horizontal plane; g, 
gravitational acceleration; p, density. 
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FLOW OF AN ANOMALOUS VISCOUS FLUID 

IN A CENTRIFUGAL JET NOZZLE 

O. M. Sokovnin, I. V. Flegentov, and V. A. Polovnikov UDC 532.135 

The motion of twisted flows of an anomalous viscous fluid subject to an expo- 
nential law has been studied numerically. 

Centrifugal jet nozzles have found extensive application in chemical technology apparatus 
requiring uniform spraying densities (absorbers, wet dust collectors, hydraulic foam ex- 
tinguishers). In this case, the spray medium is generally a form of an anomalous viscous 
fluid: solutions of surface-active materials, suspensions, etc. 

Let us take a look at the flow of an anomalous viscous fluid subject to an exponential 
law in a centrifugal jet nozzle (Fig. I). We will assume the regime of motion to be both 
steady-state and axisymmetric. We will separate the flow region into the following zones: 

I) the peripheral flow, bounded by the conical surfaces of frame 1 and insert 2; 

II) the central flow in the channel, with a threaded insert; 

III) the zone in which the peripheral and central flows are mixed. 

I. We will examine the motion of the fluid in a special orthogonal curvilinear coordi- 
nate system ~,~ , 6, with the ~ axis coincident with the generatrix of the internal c~ne. 
We will assume in the solution that i) the influence of mass forces on the flow of the fluid 
is negligibly small; 2) that the velocity in the direction of the 8 axis is considerably 
smaller than the velocity in the direction of the ~ axis. The system of differential equa- 
tions of fluid motion with consideration of [i] will then assume the following form: 

OV~ pV~sin~ = ____0P K O (E._ 1 0 V ~ +  KE n-l ~ OV~ pVt Ol 8 c o s ~ - - l s i n ~  O 1  + 06 \ 08 ] 6 c o s ~ - - I s i n ~  08 

OV~ pV~Vzsin~ =K 0 (E._t OVa) 2KE.-~cos~z OV~ 
pVt Ol 8cos tz - - l s in tz  ~ + 8costz--lsino~ 08 " 

(1) 

pV~cos~ = Op + K 0 ( OVt ) K E n - l s i n a  OVz 
8 c o s ~ - - l s i n ~  - -  O~ ~ En-I L 08 8 c o s ~ - - / s i n ~  08 

Here 

E ] / f  OVt 2 

The bounda ry  c o n d i t i o n s  w i l l  be as  f o l l o w s :  

V l ~  V~-~- 0 for 8-~ O; 8--~ ~o" (2) 
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